
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

1 Instructor: Daniel Llamocca
TAs: Alex Fillmore, Joseph Volvic, Madhusudhan Swargam

Laboratory 6
(Due date: 011: December 3rd, 005: December 4th, 007: December 5th)

OBJECTIVES
✓ Describe Finite State Machines (FSMs) in VHDL.
✓ Implement a Digital System: Control Unit and Datapath Unit.

VHDL CODING

✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: register, shift register, counter, adder/subtractor.

ITERATIVE SQUARE ROOT IMPLEMENTATION (100/100)
▪ Given an unsigned integer 𝐷, we want to design a circuit that computes the square root 𝑄 and remainder 𝑅 (𝑅 = 𝐷 − 𝑄 × 𝑄).

There exist many algorithms for hardware implementation, and the following one has proved to outperform most others:

Radical (2𝑛 bits): 𝐷 = 𝑑2𝑛−1𝑑2𝑛−2𝑑2𝑛−3𝑑2𝑛−4 … 𝑑1𝑑0 Square Root (𝑛 bits): 𝑄 = 𝑞𝑛−1𝑞𝑛−2 … 𝑞0
We define: 𝑄𝑘 = 𝑞𝑛−1𝑞𝑛−2 … 𝑞𝑘, 𝑘 = 0,1, … , 𝑛 − 1 𝑄𝑘: unsigned integer with 𝑛 − 𝑘 bits.

𝑅′𝑘 = 𝑟′𝑛𝑟′𝑛−1𝑟′𝑛−2 … 𝑟′𝑘, 𝑘 = 0,1, … , 𝑛 − 1 𝑅′𝑘: signed (2C) integer with 𝑛 − 𝑘 + 1 bits.

for k = n-1 → 0

if k = n-1 then

𝑅′𝑘 = 𝑑2𝑘+1𝑑2𝑘 − 01 (𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01)

else

𝑅′𝑘 = {
𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 − 𝑄𝑘+101, 𝑖𝑓𝑞𝑘+1 = 1

𝑅′𝑘+1𝑑2𝑘+1𝑑2𝑘 + 𝑄𝑘+111, 𝑖𝑓𝑞𝑘+1 = 0

end

𝑞𝑘 = {
1, 𝑖𝑓 𝑅′𝑘 ≥ 0

0, 𝑖𝑓 𝑅′𝑘 < 0

end

▪ 𝑄 and 𝑅′𝑛−1 are initialized with 0’s.

▪ This is a non-restoring algorithm, meaning that at
the last iteration we might not have the correct
remainder 𝑅. To get the correct value of 𝑅, an

extra operation would be required.

Remainder: 𝑅 = 𝑅0 = {
𝑅′0, 𝑖𝑓 𝑅′0 ≥ 0

𝑅′0 + 𝑄01, 𝑖𝑓 𝑅′0 < 0

▪ In practice, the remainder 𝑅 is rarely used, and

we do not implement that extra operation here.

▪ Architecture (𝑛 = 6):

D
(
1
1
)

7

sclrC

sclrR  1, ER  1

sclrC  1, EC  1

S1

1

resetn=0

0

ER  1, ED  1

S2

done  1

S3

0
zC EC  1

1

ED, LD  1

10

LEFT SHIFT

REGISTER

s_L
E w

DI
12

LEFT SHIFT

REGISTER

s_L
E w

D
I
(
1
0
)

D
I
(
8
)

D
I
(
0
)

D
I
(
2
)

+/- addsub

LEFT SHIFT

REGISTER

sclr
E
s_L

w

REGISTER

sclr
E

8

7

8

6

D
(
1
0
)

R5...R0

R7

1

6

RI

RI7

Q

Counter
0 to 5

E
sclr

FSM

sclrR
ER

done

c
l
o
c
k

r
e
s
e
t
n

0 0

z
zC

EC

ED
LD

0

zC

sclrR
ER

LD
ED

LD
ED

Q

s

Do De

C=5?

6

s

s

R6...R0
6

D
I
(
4
)

D
I
(
6
)

D
I
(
1
1
)

D
I
(
9
)

D
I
(
1
)

D
I
(
3
)

D
I
(
5
)

D
I
(
7
)

RP

R

M
S

B

M
S

B

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

2 Instructor: Daniel Llamocca
TAs: Alex Fillmore, Joseph Volvic, Madhusudhan Swargam

▪ Based on the algorithm, an iterative architecture for 𝑛 = 6 is presented. The register R stores the ‘estimated remainder’ 𝑅′𝑘

at each iteration. A square root operation is started when 𝑠 = 1 (where the 12-bit input DI is captured). The signal done is

asserted to indicate that the operation has been completed and the result appears in register Q (and 𝑅′0 appears in RP)

✓ At each iteration, 𝑞𝑘 (a bit of the square root 𝑄) is computed and shifted into the register Q.

✓ The input data DI is captured into shift register D. The bits 𝑑2𝑘+1𝑑2𝑘 correspond to the 2 MSBs of the register D. At

every iteration, the register D shifts two bits to the left.

 Register D: implemented by two parallel access shift registers: Do (for odd bits of D) and De (for even bits of D).

✓ Note that on RP, we get 𝑅′0 at the end of the computations. This is a 7-bit signed number. If it is positive, it is the correct

remainder. If it is negative, an extra operation is required to get the correct remainder (not implemented in this circuit).
✓ On register Q, we get the result, which is the square root 𝑄, a 6-bit unsigned integer.

▪ The circuit includes three 6-bit parallel access left shift registers, an 8-bit register, a modulo-6 counter, an 8-bit

adder/subtractor (addsub=0: add, addsub=1: subtract), and an FSM. Each sequential component has resetn and clock inputs.

▪ The circuit is an example of a Digital System: It includes a Control Circuit (FSM) and a Datapath Circuit. The Datapath Circuit

is made from combinational and sequential components. The circuit is also called a Special-Purpose Processor. In this case,
the special purpose is the integer square root.

PROCEDURE

▪ Vivado: Complete the following steps:

✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device
for the Nexys A7-50T).

✓ Write the VHDL code for the given circuit. Synthesize your circuit to clear syntax errors.

 Use the Structural Description: Have a separate file for the counter, parallel access shift register with sclr, register,

adder/subtractor, FSM, and top file.

 Suggestion: Use parametric code (set up the proper parameters with generic map) for these components:

 Parallel access shift registers with sclr: my_pashiftreg_sclr

* Note that some of these shift registers do not use the sclr input. In this case, that input should be tied to ‘0’.

 Counter: my_genpulse_sclr (include in the top file: use ieee.math_real.log2; use ieee.math_real.ceil;)

 Register with enable: my_rege

 Adder/subtractor: my_addsub

✓ Write the VHDL testbench (generate a 100 MHz input clock for your simulations) to test the following cases:

DI Q RP Comments

101010101010 (2730) 110100 (52) 0110001 (0x31) Remainder ✓

001001101111 (623) 011000 (24) 1111110 (0x7E)
Correct remainder:

1111110+0110001 = AF = 2F

111110000010 (3970) 111111 (63) 0000001 (0x01) Remainder ✓

000100100001 (289) 010001 (17) 0000000 (0x00) Remainder ✓

010110111110 (1470) 100110 (38) 1001101 (0x4D)
Correct remainder:

1001101+1001101 = 9A = 1A

100010100001 (2209) 101111 (47) 0000000 (0x00) Remainder ✓

 Note that RP is a 7-bit signed number. If it is positive, RP has the correct remainder. If it is negative, the correct

remainder is an unsigned 7-bit number, that can be obtained by taking the 7 LSBs out of the operation 𝑅′0 + 𝑄01.

 The testbench should be written according to the timing diagram shown in the figure, where the first two values for

DI are fed. Note that there are 𝑛 + 2 = 8 cycles between data values.

 26F 000

clock

resetn

s

DI 000 AAA 000

n+2 cycles

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

3 Instructor: Daniel Llamocca
TAs: Alex Fillmore, Joseph Volvic, Madhusudhan Swargam

✓ Perform Behavioral Simulation and Timing Simulation of your design. Demonstrate this to your TA.
 Behavioral Simulation: To help debug your circuit, add the internal signals (state, Do, De, RI) to the waveform

view. Go to: SCOPE window: testbench → UUT. Then go to Objects Window → Signal(s) → Add to Wave Window.

Then, re-run the simulation.

 Note that you can represent data as unsigned integers (use Radix → Unsigned Decimal).

 If your circuit works as expected, the result appears on Q and RP when done=1. Verify that the values of Q and RP

(when done=1) match those listed in the previous table.

✓ I/O Assignment: Create the XDC file associated with your board.

 Suggestion (for Basys 3, use SW15 instead of CPU_RESETN for resetn input)

Board pin names CLK100MHZ CPU_RESETN SW15 SW11-SW0 LED15 LED12-LED6 LED5-LED0

Signal names in code clock resetn s DI11-DI0 done RP6-RP0 Q5-Q0

 The board pin names (except CPU_RESETN) are used by all the listed boards (Nexys A7-50T/A7-100T, Nexys 4/DDR,

Basys 3). I/Os: all switches and LEDs are active-high.

 Note: synchronous circuits always require a clock and reset signal.

 Reset signal: As a convention in this class, we use active-low reset (resetn). As a result, ensure that resetn is tied

to the proper board resource:

 Nexys A7-50T/A7-100T, Nexys 4/DDR: For resetn, use CPU_RESETN pin. This is an active-low push button.

 Basys 3: There is no active low push button. Thus, for resetn, use SW15. Even though SW15 is active high, we

can still think of it as active-low resetn, where the circuit is reset when the switch position is OFF (‘0’).

 Clock signal: Like other signals in the XDC file, you need to uncomment the lines associated with the clock signal
and replace the signal label with name used in your code. In addition, there is parameter -period that is set by

default to 10.00. This is the period (in ns) that your circuit should support.

 Nexys A7-50T: In these lines, replace the label CLK100MHZ with the signal name you use in your code (clock):
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { CLK100MHZ }];

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100MHZ}];

 Basis 3: In these lines, replace the label clk with the signal name used in your code (clock):

set_property PACKAGE_PIN W5 [get_ports clk]

set_property IOSTANDARD LVCMOS33 [get_ports clk]

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports clk]

✓ Generate and download the bitstream on the FPGA. Test the circuit (use the same input values as in the testbench).

Demonstrate this to your TA.

SUBMISSION
▪ Submit to Moodle (an assignment will be created):

✓ This lab sheet (as a .pdf) completed and signed off by the TA (or instructor)
✓ (As a .zip file) all the generated files: VHDL code files, VHDL testbench,

and XDC file. DO NOT submit the whole Vivado Project.
 Your .zip file should only include one folder (the figure shows and

example). Do not include subdirectories.
 It is strongly recommended that all your design files, testbench, and

constraints file be located in a single directory. This will allow for a
smooth experience with Vivado.

 You should only submit your source files AFTER you have demoed your
work. Submission of work files without demoing will be assigned NO
CREDIT.

TA signature: ________________________________ Date: __________________________

lab6

top.vhd

lab6.xdc

top_tb.vhd

Design
files

Testbench file

Constraints file

my_pashiftreg_sclr.vhd

fa.vhd

my_addsub.vhd

my_genpulse_sclr.vhd

my_rege.vhd

my_fsm.vhd

	Objectives
	VHDL Coding

	Iterative Square Root Implementation (100/100)
	Procedure

	Submission

